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Preamble
� Computer vision includes many inverse problems, i.e., the 

inference of “hidden factors” from images
� Motion analysis is one of these inverse problems

– e.g., estimating rigid/non-rigid, simple/complex motions so as to 
track moving targets and recognize motion patterns.

� These tasks can be apparently accommodated by the 
Bayesian framework
– X: hidden factors, e.g., motion parameters 
– Z: image observations
– p(X|Z) ∝ p(Z|X)p(X)

� Things are fine when talking about low-dim motion, such as 
rigid motion and affine motion.

� But …

X

Z
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High-dimensional Motion
� What about those complex motions with a larger 

number of degrees of freedom?
� High-dimensional motion (HDM)

– Articulation of linked kinematical structures
– Deformation of elastic contours or surfaces
– Multi-motion of multiple occluding targets
– …

� Applications
– Intelligent video surveillance
– Human computer interaction
– Video understanding and multimedia databases
– Medical imaging
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The Problem (articulation)

tracking a complex articulated structure in monocular video
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The Problem (deformation)
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The Problem (multi-motion)
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The Problem
� Xt : motion at time t
� Zt : image measurement (evidence) at time t
� Zt = {Z1, …, Zt} : measurement history
� A major task of motion analysis is to calculate the 

posterior p(Xt|Zt) of Xt given measurement history
� Easy to see the recursive form

∫ −−−−∝ 1111 )|()|()|()|( ttttttttt dXZXpXXpXZpZXp
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State-of-the-Art
� Basic approaches

– differential-based approaches (bottom-up)
9 construct an objective function and minimize it

– Prediction-correction approaches (top-down)
9 parametric methods

� Kalman filtering
9 non-parametric (or sampling-based) methods

� Particle filtering

� Particle Filtering
– A p.d.f. is represented by a set of particles
– The solution is found by the evolution of the particles
– It is flexible for non-Gaussian densities

� Obviously, the dimension of X and the prior p(X) determine the 
solution space.

� Both work for low-dim motion, e.g., rigid motion, since dim(X) is 
low and p(X) is simple.
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State-of-the-Art
� But HDM has a completely different story. 
� these approaches are confronted by the “curse of 

dimensionality”!
– i.e., tremendous performance degradation of effectiveness and 

efficiency when the dimensionality increases
– differential approach

9difficult to calculate high-dim derivatives 
9 too many local optima

– sampling-based approach 
9exponential requirements for samples 
9computationally prohibitive
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The other way around?
� Reducing the dimension

– To seek for the lowest dimensional subspace of X
9 linear subspaces
9 nonlinear manifolds

– To model p(Y), where Y is the low-dim projection of X
9 configuration space 

� But …



8/29/2006 11

Inevitability of a high-dim space ?!
� The intrinsic complexity of HDM itself

– Low-dimensional manifolds (linear/nonlinear) may exist
9by reducing motion correlation or motion constraints
9 for specific motion (like walking, hand grasping)

– But the intrinsic complexity is irreducible 
– It may be quite high for those less-constrained HDM

9E.g., arbitrary body articulation

� The conditional dependency of HDM given images
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The ROOT of the curse
� The centralized methodology

– Motion is modeled in a centralized fashion
9Centralized models are compact (and low-dimensional)
9But the intrinsic complexity bounds the dimensionality
9Motion parameters are tightly correlated
9 i.e., we have to deal with p(X) as a whole

– Then image observation also has to be centralized
9 Image observation Z is produced by X
9Thus, we have to deal with p(Z|X) as a whole

� It is very tight, since we have to work with a pretty 
high dimensional but irreducible space.

� Is it a dead end?
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New Approach
� “dimension reduction”Æ “dimension redundancy”
� Why not going to an even higher dim. space?

– A distributed motion representation
9 A relaxed representation
9 highly redundant but loosely correlated 
9 Exploiting motion correlations rather than eliminating them
9 enables distributed image observations

– A collaborative motion analyzer
9 !! Completely different from the conventional approach, which uses

one single but high-dim and super-powerful motion analyzer. 
9 We try to use a group of mutually-dependent (collaborative) low-

dim motion analyzer to do the job.
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The Idea: an illustration

The conventional centralized approach:

(1) Motion is modeled by Θ

(2) Difficult to model motion prior p(Θ)

(3) p(Θ|Z) ∝ p(Z|Θ)p(Θ) ≠ Π p(θk|Z)

(4) Computationally infeasible, and seems 
to be no way to turn

The new collaborative approach:

(1) Motion model is redundant

(2) X is a networked subpart Xi 

(3) Motion prior is distributed in the network

(4) Image observations are also distributed

(5) A set of low-dim motion analyzer p(Xi|Zi) 
collaborates and solves the problem
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Theory and Benefits
� Theoretical foundation (see later slides)

– Markov networks, 
– Variational analysis and mean field theory
– Collaboration and competition mechanisms

� Benefits of the new approach
– dramatic reduction of computation

9 from exponential Æ close-to-linear

– robustness to occlusion and clutters
9handling conditional dependency



Theory

� Distributed representation & Markov network
� Tool: probabilistic variational analysis
� The beauty of the mean field theory
� A new computational paradigm
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Distributed Motion Model
Undirected 

links

Directed
links

Markov 
Network
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Variational Analysis
� We want to infer
� It is difficult, because of the networked structure.
� We perform probabilistic variational analysis
� The idea is to find an optimal approximation        of          

, such that the Kullback-Leibler (KL) divergence of 
these two distribution is minimized:
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Mean Field Theory
� When we choose a full factorization variation:

� We end up with a very interesting result: a set of fixed point 
equations:

� This is very similar to the Mean Field theory in statistical physics.
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Computational Paradigm

� Three factors affect the posterior of a node:
– Local prior
– Neighborhood prior
– Local likelihood



Algorithms

� Collaborative particle networks
� Example: Mean field Monte Carlo (MFMC)
� Complexity: from exponential to linear
� Unsolved problems



Case Studies

� Articulated motion capturing
� Multi-target motion tracking
� Deformable motion alignment 
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Cooperation and articulation
� Cooperation

– Provides inclusive information to others
9 “I am here, you probably should be somewhere around”☺

– Two sources
9Physical constraints, e.g.,

� Connectivity
� Smoothness
� Distance

9Purposive constraints, e.g.,
� Specific motion correlations

� Articulation is a good example for cooperation
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Initial Results
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Competition and Multi-motion
� Competition

– Provides exclusive information to others
9“I am here, you probably should not be somewhere here also” /

– Why competition?
9 competing for common image resources
9 to handle conditional dependency

� Multi-target tracking is a suitable case
– The motion of multiple targets are obviously independent 

when they are far apart
– However, when they get closer and occlude each other, since 

it is difficult to distinguish from images which is which, they 
become conditionally dependent once image observations 
are made.

� Ad hoc Markov network and ad hoc MFMC
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Ad hoc Markov Network

• The topology of the network changes with time

• The connectivity of two nodes depends on the distance of 
two targets (i.e., if they are close enough)
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Tracking Multiple Targets

Click to play video
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Tracking Multiple Targets
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Collaboration and Deformation
� Collaboration

– A combination of cooperation and competition

� Deformable motion
– Structured 
– non-structured
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Initial Results
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Conclusions
� Visual motion capturing of non-rigid targets is challenging due to 

the high-dimensionality of the motion. 
� Existing methods (e.g., differential-based and sampling-based 

methods) can not scale to complex high-dim motion tracking, due to 
the curse of dimensionality.

� The new approach: 
– A decentralized representation Æ A Markov network
– Motion capturing Æ Bayesian inference of the network
– A variational analysis Æ a new computational diagram
– Implementation ÆMean Field Monte Carlo (MFMC)
– A collaborative particle network Æ an efficient solution

� This new approach aims at an efficient and effective solution to this 
challenging task.
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