Visual Analysis of High-Dimensional Motion: A Collaborative Approach

Aggelos K. Katsaggelos Work by Ying Wu

Dept. EECS Northwestern University Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

Preamble

- Computer vision includes many inverse problems, i.e., the inference of "hidden factors" from images
- Motion analysis is one of these inverse problems
 - e.g., estimating rigid/non-rigid, simple/complex motions so as to track moving targets and recognize motion patterns.
- These tasks can be apparently accommodated by the Bayesian framework
 - X: hidden factors, e.g., motion parameters
 - Z: image observations
 - $p(X \mid Z) \propto p(Z \mid X)p(X)$
- Things are fine when talking about low-dim motion, such as rigid motion and affine motion.
- But ...

High-dimensional Motion

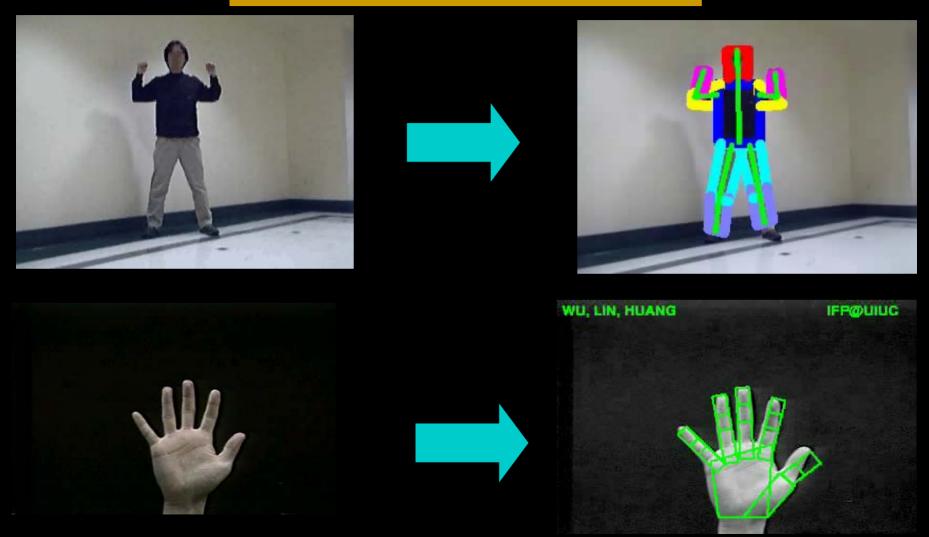
- What about those complex motions with a larger number of degrees of freedom?
- High-dimensional motion (HDM)
 - Articulation of linked kinematical structures
 - Deformation of elastic contours or surfaces
 - Multi-motion of multiple occluding targets

— · · ·

Applications

- Intelligent video surveillance
- Human computer interaction
- Video understanding and multimedia databases
- Medical imaging

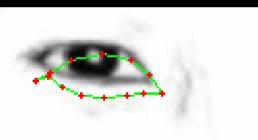
The Problem (articulation)



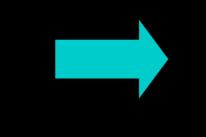
tracking a complex articulated structure in monocular video

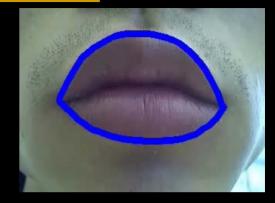
8/29/2006

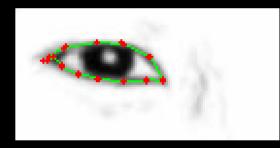
The Problem (deformation)

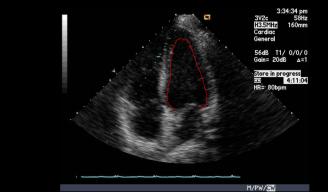


M/PW/30









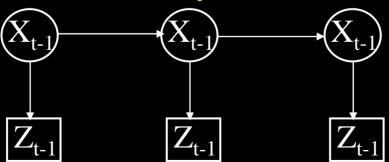
8/29/2006

The Problem (multi-motion)

The Problem

- \square X_t : motion at time t
- \Box Z_t : image measurement (evidence) at time t
- $\underline{Z}_t = \{Z_1, ..., Z_t\}$: measurement history
- A major task of motion analysis is to calculate the posterior $p(X_t | \underline{Z}_t)$ of X_t given measurement history
 - Easy to see the recursive form

 $p(X_t \mid \underline{Z}_t) \propto p(Z_t \mid X_t) \int p(X_t \mid X_{t-1}) p(X_{t-1} \mid \underline{Z}_{t-1}) dX_{t-1}$



State-of-the-Art

Basic approaches

- differential-based approaches (bottom-up)
 - ✓ construct an objective function and minimize it
- Prediction-correction approaches (top-down)
 - ✓ parametric methods
 - Kalman filtering
 - ✓ non-parametric (or sampling-based) methods
 - Particle filtering
- Particle Filtering
 - A p.d.f. is represented by a set of particles
 - The solution is found by the evolution of the particles
 - It is flexible for non-Gaussian densities
- Obviously, the dimension of X and the prior p(X) determine the solution space.
- Both work for low-dim motion, e.g., rigid motion, since dim(X) is low and p(X) is simple.

State-of-the-Art

- But HDM has a completely different story.
- these approaches are confronted by the "curse of dimensionality"!
 - i.e., tremendous performance degradation of effectiveness and efficiency when the dimensionality increases
 - differential approach
 - \checkmark difficult to calculate high-dim derivatives
 - ✓ too many local optima
 - sampling-based approach
 - ✓ exponential requirements for samples
 - ✓ computationally prohibitive

The other way around?

Reducing the dimension

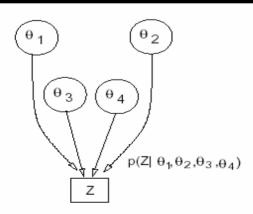
- To seek for the lowest dimensional subspace of X
 - ✓ linear subspaces
 - ✓ nonlinear manifolds
- To model p(Y), where Y is the low-dim projection of X
 ✓ configuration space

But ...

Inevitability of a high-dim space ?!

- The intrinsic complexity of HDM itself
 - Low-dimensional manifolds (linear/nonlinear) may exist
 - \checkmark by reducing motion correlation or motion constraints
 - \checkmark for specific motion (like walking, hand grasping)
 - But the intrinsic complexity is irreducible
 - It may be quite high for those less-constrained HDM
 ✓ E.g., arbitrary body articulation

The conditional dependency of HDM given images



$$p(\Theta|\mathbf{Z}) \neq \prod_{i=1}^{4} p(\theta_i|\mathbf{Z}).$$

8/29/2006

The ROOT of the curse

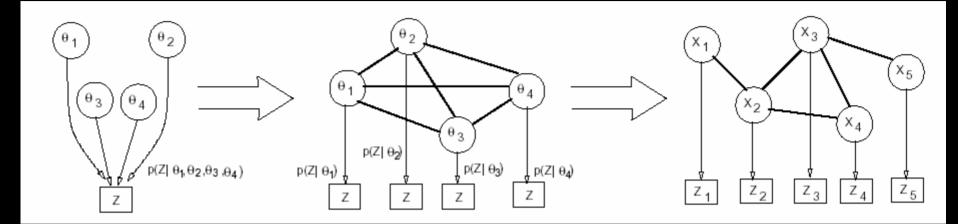
The centralized methodology

- Motion is modeled in a centralized fashion
 - ✓ Centralized models are compact (and low-dimensional)
 - \checkmark But the intrinsic complexity bounds the dimensionality
 - ✓ Motion parameters are tightly correlated
 - \checkmark i.e., we have to deal with p(X) as a whole
- Then image observation also has to be centralized
 - ✓ Image observation Z is produced by X
 - \checkmark Thus, we have to deal with p(Z | X) as a whole
- It is very tight, since we have to work with a pretty high dimensional but irreducible space.
- Is it a dead end?

New Approach

- "
 dimension reduction" \rightarrow "dimension redundancy"
- Why not going to an even higher dim. space?
 - A distributed motion representation
 - \checkmark A relaxed representation
 - ✓ highly redundant but loosely correlated
 - \checkmark Exploiting motion correlations rather than eliminating them
 - enables distributed image observations
 - A collaborative motion analyzer
 - I Completely different from the conventional approach, which uses one single but high-dim and super-powerful motion analyzer.
 - ✓ We try to use a group of mutually-dependent (collaborative) lowdim motion analyzer to do the job.

The Idea: an illustration



The conventional centralized approach:

- (1) Motion is modeled by Θ
- (2) Difficult to model motion prior $p(\Theta)$
- (3) $p(\Theta \mid Z) \propto p(Z \mid \Theta)p(\Theta) \neq \Pi p(\theta_k \mid Z)$
- (4) Computationally infeasible, and seems to be no way to turn

The new collaborative approach:

- (1) Motion model is redundant
- (2) X is a networked subpart X_i
- (3) Motion prior is distributed in the network
- (4) Image observations are also distributed
- (5) A set of low-dim motion analyzer $p(X_i | Z_i)$ collaborates and solves the problem

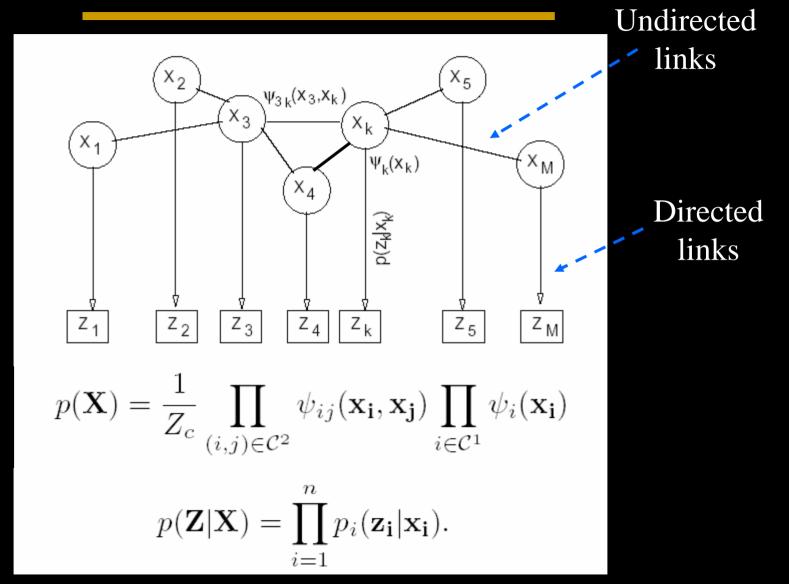
Theory and Benefits

- Theoretical foundation (see later slides)
 - Markov networks,
 - Variational analysis and mean field theory
 - Collaboration and competition mechanisms
 - Benefits of the new approach
 - dramatic reduction of computation
 - \checkmark from exponential \rightarrow close-to-linear
 - robustness to occlusion and clutters
 - \checkmark handling conditional dependency

Theory

Distributed representation & Markov network
Tool: probabilistic variational analysis
The beauty of the mean field theory
A new computational paradigm

Distributed Motion Model



Markov Network

Variational Analysis

- We want to infer $p(\mathbf{x}_i | \mathbf{Z})$
- It is difficult, because of the networked structure.
- We perform probabilistic variational analysis
- The idea is to find an optimal approximation $q^*(\mathbf{X})$, $s_{\mathbf{v}} p(\mathbf{X}|\mathbf{Z})$ t the Kullback-Leibler (KL) divergence of these two distribution is minimized:

$$\begin{array}{lll} q^*(\mathbf{X}) &=& \displaystyle \mathop{\arg\min}_q KL(q(\mathbf{X}||p(\mathbf{X}|\mathbf{Z})) \\ &=& \displaystyle \mathop{\arg\min}_q \int_x q(\mathbf{X}) \log \frac{q(\mathbf{X})}{p(\mathbf{X}|\mathbf{Z})} \end{array}$$

Mean Field Theory

When we choose a full factorization variation:

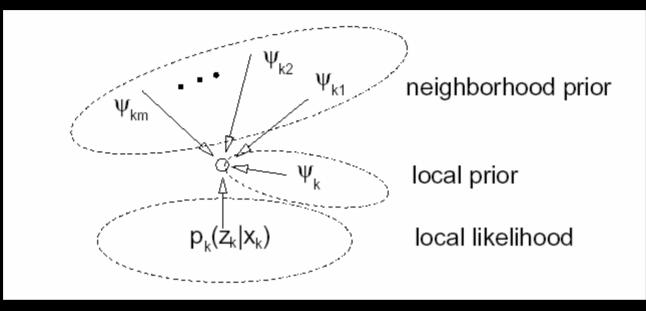
$$q(\mathbf{X}) = \prod_{i}^{M} q_i(\mathbf{x}_i)$$

We end up with a very interesting result: a set of fixed point equations:

$$q_i(\mathbf{x}_i) \longleftarrow \frac{1}{Z'_i} p_i(\mathbf{z}_i | \mathbf{x}_i) \psi_i(\mathbf{x}_i) M_i(\mathbf{x}_i), \quad \text{where}$$
$$M_i(\mathbf{x}_i) = \exp\{\sum_{k \in \mathcal{N}(i)} \int_{x_k} q_k(\mathbf{x}_k) \log \psi_{ik}(\mathbf{x}_i, \mathbf{x}_k)\},$$

This is very similar to the Mean Field theory in statistical physics.

Computational Paradigm



Three factors affect the posterior of a node:

- Local prior
- Neighborhood prior
- Local likelihood

Algorithms

Collaborative particle networks
Example: Mean field Monte Carlo (MFMC)
Complexity: from exponential to linear
Unsolved problems

Case Studies

Articulated motion capturing
Multi-target motion tracking
Deformable motion alignment

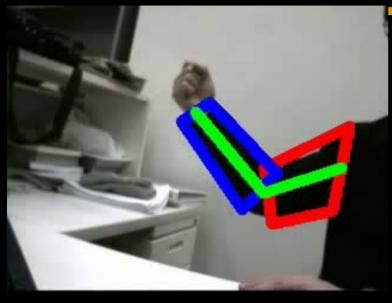
Cooperation and articulation

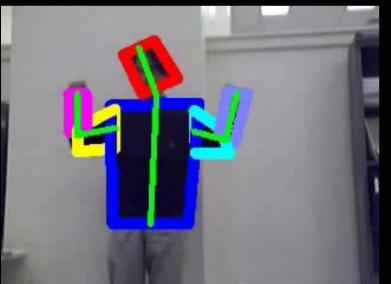
Cooperation

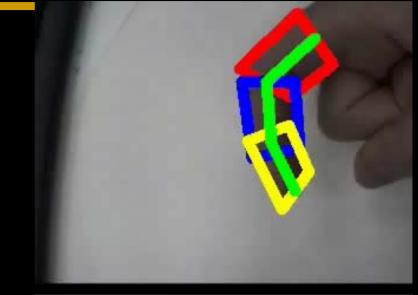
- Provides inclusive information to others
 - "I am here, you probably should be somewhere around"
- Two sources
 - ✓ Physical constraints, e.g.,
 - Connectivity
 - Smoothness
 - Distance
 - ✓ Purposive constraints, e.g.,
 - Specific motion correlations

Articulation is a good example for cooperation

Initial Results





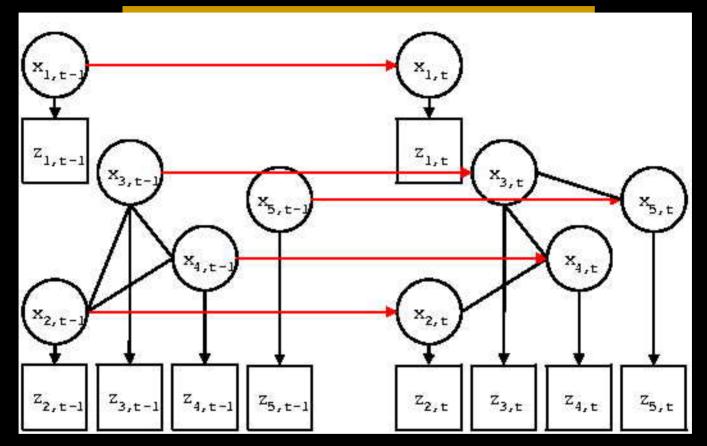


Competition and Multi-motion

Competition

- Provides exclusive information to others
 - \checkmark 'I am here, you probably should not be somewhere here also" igodot
- Why competition?
 - \checkmark competing for common image resources
 - \checkmark to handle conditional dependency
- Multi-target tracking is a suitable case
 - The motion of multiple targets are obviously independent when they are far apart
 - However, when they get closer and occlude each other, since it is difficult to distinguish from images which is which, they become conditionally dependent once image observations are made.
- Ad hoc Markov network and ad hoc MFMC

Ad hoc Markov Network



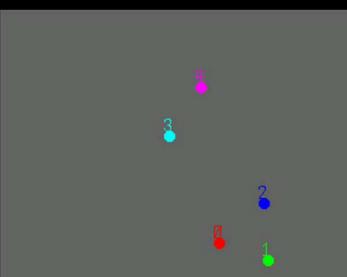
- The topology of the network changes with time
- The connectivity of two nodes depends on the distance of two targets (i.e., if they are close enough)

Tracking Multiple Targets

Click to play video

Tracking Multiple Targets

10:22:24.197 20-01-2004

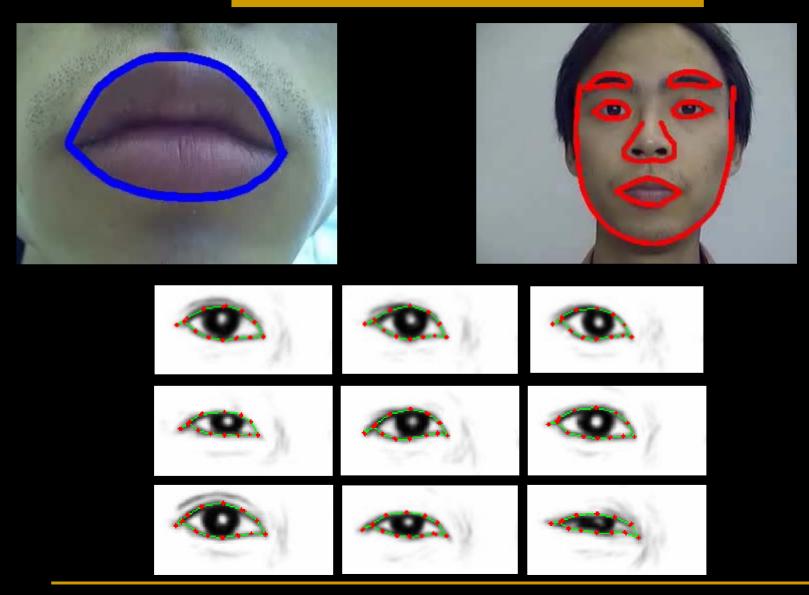


Collaboration and Deformation

Collaboration

- A combination of cooperation and competition
- Deformable motion
 - Structured
 - non-structured

Initial Results



Conclusions

- Visual motion capturing of non-rigid targets is challenging due to the high-dimensionality of the motion.
- Existing methods (e.g., differential-based and sampling-based methods) can not scale to complex high-dim motion tracking, due to the curse of dimensionality.
- The new approach:
 - A decentralized representation
 - Motion capturing
 - A variational analysis
 - Implementation
 - A collaborative particle network

- \rightarrow A Markov network
- \rightarrow Bayesian inference of the network
- \rightarrow a new computational diagram
- → Mean Field Monte Carlo (MFMC)
- \rightarrow an efficient solution

This new approach aims at an efficient and effective solution to this challenging task.