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Preamble

m Computer vision includes many inverse problems, i.e., the
inference of “hidden factors” from images

B Motion analysis 1s one of these inverse problerns
— e.g., estimating rigid/non-rigid, simple/complex motions so as to

track moving targets and recognize motion patterns.

m These tasks can be apparently accommodated by the
Bayesian framework
— X: hidden factors, e.g., motion parameters
— Z: image observations |
- PX|2) o p(Z | X)p(X) Z

®m Things are fine when talking about low-dim motion, such as

rigid motion and affine motion.

m But...
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High-dimensional Motion

m What about those complex motions with a larger
number of degrees of freedom?

m High-dimensional motion (HDM)

— Articulation of linked kinematical structures
— Deformation of elastic contours or surfaces

— Multi-motion of multiple occluding targets

m Applications
— Intelligent video surveillance
— Human computer interaction

— Video understanding and multimedia databases

— Medical imaging
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The Problem (articulation)
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tracking a complex articulated structure in monocular video
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The Problem (deformation)
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The Problem (multi-motion)
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The Problem

m X :motion at time t
m /. :image measurement (evidence) at time t
mZ =17, ..., 7.} : measurement history

B A major task of motion analysis 1s to calculate the
posterior p(X, | Z,) ot X, given measurement history

m Fasy to see the recursive form

P(X,1Z) o PZ | X[ PO I X 0) P(K 1 Z1)dX

8/29/2006 7



State-of-the-Art

m Basic approaches

— differential-based approaches (bottom-up)
v construct an objective function and minimize it

— Prediction-correction approaches (top-down)

v' parametric methods
m Kalman filtering
v' non-parametric (or sampling-based) methods

m Particle filtering

m Particle Filtering
— A p.d.f. is represented by a set of particles
— The solution 1s found by the evolution of the particles

— It is flexible for non-Gaussian densities
B Obviously, the dimension of X and the prior p(X) determine the
solution space.

B Both work for low-dim motion, e.g., rigid motion, since dim(X) is
low and p(X) 1s simple.
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State-of-the-Art

m But HDM has a completely different story.

m these approaches are confronted by the “curse of
dimensionality”!

— 1Le., tremendous performance degradation of effectiveness and
efficiency when the dimensionality increases

— differential approach
v/ difficult to calculate high-dim derivatives
v too many local optima

— sampling-based approach

v’ exponential requirements for samples

v’ computationally prohibitive
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The other way around?

B Reducing the dimension

— To seek for the lowest dimensional subspace of X
v’ linear subspaces

v nonlinear manifolds

— To model p(Y), where Y 1s the low-dim projection of X

v configuration space

m But...
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Inevitability of a high-dim space ?!

m The intrinsic complexity of HDM itself

— Low-dimensional manifolds (linear/nonlinear) may exist
v by reducing motion correlation or motion constraints

v’ for specific motion (like walking, hand grasping)
— But the intrinsic complexity is irreducible

— It may be quite high for those less-constrained HDM
v'E.g., arbitrary body articulation

B The conditional dependency of HDM given images

p(O|Z) # 11—, p(6:|Z).
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The ROQOT of the curse

m The centralized methodology

— Motion is modeled in a centralized fashion
v’ Centralized models are compact (and low-dimensional)
v But the intrinsic complexity bounds the dimensionality
v’ Motion parameters are tightly correlated
v'i.e., we have to deal with p(X) as a whole

— Then image observation also has to be centralized

v Image obsetvation Z is produced by X
v'Thus, we have to deal with p(Z|X) as a whole

m [t is very tight, since we have to work with a pretty
high dimensional but irreducible space.

m [sitadead end’?
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New Approach

B “dimension reduction” = “dimension redundancy”

B Why not going to an even higher dim. space?

A distributed motion representation

v
v
v
v

A relaxed representation
highly redundant but loosely correlated
Exploiting motion correlations rather than eliminating them

enables distributed image observations

A collaborative motion analyzer

v

v

Il Completely different from the conventional approach, which uses
one single but high-dim and super-powerful motion analyzer.

We try to use a group of mutually-dependent (collaborative) low-
dim motion analyzer to do the job.
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The Idea: an illustration

The conventional centralized approach:
(1) Motion is modeled by ©

(2) Difficult to model motion prior p(®)
(3) pO@O]Z) < p(Z|O)p(®) #ITp©,]2)

(4) Computationally infeasible, and seems
to be no way to turn

The new collaborative approach:

Q)
(2)
(3)
(%)
€)

Motion model is redundant

X is a networked subpart X,

Motion prior is distributed in the network
Image observations are also distributed

A set of low-dim motion analyzer p(X,|Z,)
collaborates and solves the problem
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Theory and Benetits

m Theoretical foundation (see later slides)
— Markov networks,
— Variational analysis and mean field theory

— Collaboration and competition mechanisms

m Benefits of the new approach
— dramatic reduction of computation
v’ from exponential = close-to-linear

— robustness to occlusion and clutters

v handling conditional dependency
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Theory

B Distributed representation & Markov network
B Tool: probabilistic variational analysis
B The beauty of the mean field theory

B A new computational paradigm



Distributed Motion Model

Undirected
links
Markov D:':ef(ted
Network INKS
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Variational Analysis

m We want to infer

m It is difficult, because of the networked structure.

m We perform probabilistic variational analysis

B The idea is to find an optimal approximation
, sUIBARA) the Kullback-Leibler (KL) divergence of

these two distribution is minimized:

arg min K L(q(X||p(X|Z))
o

q(X)

~p(X|Z)

arg min / q(X) log

[ J_r
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Mean Field Theory

B When we choose a full factorization variation:

B We end up with a very interesting result: a set of fixed point
equations:
1

q; ”{ } A Pi 1 Zi; | X } Wy { Xi } M ) 1 Xi } ) where

g

kEN (i) ¥ T

m This 1s very similar to the Mean Field theory in statistical physics.
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Computational Paradigm

neighborhood prior

. local prior

local likelihood

m Three factors affect the posterior of a node:
— Local prior

— Neighborhood prior
— Local likelihood
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Algorithms

m Collaborative particle networks
B Fxample: Mean field Monte Carlo (MFMC)
B Complexity: from exponential to linear

m Unsolved problems



Case Studies

B Articulated motion capturing
m Multi-target motion tracking

B Deformable motion alighment



Cooperation and articulation

m Cooperation

— Provides inclusive information to others

V' T am here, you probably should be somewhere around’ ©

— T'wo sources

v’ Physical constraints, e.g.,
B Connectivity
B Smoothness
m Distance

v Purposive constraints, e.g.,

B Specific motion correlations

m Articulation is a good example for cooperation
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Initial Results
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Competition and Multi-motion

m Competition

— Provides exclusive information to others

V' “T am here, you probably should not be somewhere here also” @
— Why competition?

v' competing for common image resoutces

v’ to handle conditional dependency

m Multi-target tracking 1s a suitable case

— The motion of multiple targets are obviously independent
when they are far apart

— However, when they get closer and occlude each other, since
it 1s difficult to distinguish from images which is which, they
become conditionally dependent once image observations
are made.

B Ad hoc Markov network and ad hoc MFMC
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Ad hoc Markov Network

 The topology of the network changes with time

 The connectivity of two nodes depends on the distance of
two targets (i.e., if they are close enough)
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Tracking Multiple Targets

Click to play video
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Trackmg Multiple Targets




Collaboration and Deformation

m Collaboration

— A combination of cooperation and competition

B Deformable motion
— Structured

— non-structured
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Initial Results
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Conclusions

Visual motion capturing of non-rigid targets is challenging due to
the high-dimensionality of the motion.

Existing methods (e.g., differential-based and sampling-based
methods) can not scale to complex high-dim motion tracking, due to
the curse of dimensionality.

The new approach:
— A decentralized representation - A Markov network
— Motion capturing —> Bayesian inference of the network
— A variational analysis —> a new computational diagram
— Implementation —> Mean Field Monte Carlo (MFMC)
— A collaborative patticle network = an efficient solution

This new approach aims at an etficient and effective solution to this

challenging task.
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